
Setting up Ingress on Minikube 

 
photo courtesy: http://www.sandtable.com/a-single-aws-elastic-load-balancer-for-several-
kubernetes-services-using-kubernetes-ingress/ 

Hosted Kubernetes instances, especially on GCE, come with a 
certain number of features and configurations out of the box 
unlike Minikube, the local development platform for 
kubernetes. 

Although, minikube supports (almost) everything you would 
expect from a kubernetes cluster but since it’s running locally, 
certain cloud provider features will not work out of the box. One 
such feature is Ingress. 

What’s Ingress? 
An ingress is a set of rules that allows inbound connections to 
reach the kubernetes cluster services. 

Typically, the kubernetes cluster is firewalled from the internet. 
It has edge routers enforcing the firewall. Kubernetes resources 
like services, pods, have IPs only routable by the cluster 



network and are not (directly) accessible outside the cluster. All 
traffic that ends up at an edge router is either dropped or 
forwarded elsewhere. So, submitting an ingress to the cluster 
defines a set of rules for routing external traffic to the 
kubernetes endpoints. 

Let’s skip ahead and view what these rules look like. Here’s one 
will use for this article 
https://gist.github.com/0sc/77d8925cc378c9a6a92890e7c08937ca 

As you might have guessed, the rule is: 

 all requests to myminikube.info/ should be routed to the 
service in the cluster named echoserver. 

 requests mapping to cheeses.all/stilton should be routed to 
the stilton-cheese service. 

 and finally, requests mapping to cheeses.all/cheddar should 
be routed to the cheddar-cheese service. 

Of course, there’s more to it; like the backend tag which implies 
that unmatched requests should be routed to the default-http-
backend service and there’s also the familiar kubernetes tags; for 
example the apiVersion tag which clearly marks ingress as a beta 
feature. 

Note the annotation: 

ingress.kubernetes.io/rewrite-target: / 

This is necessary if the target services expect requests from the 
root URL i.e cheeses.all and not cheeses.all/stilton . The 
ingress mapping by default will pass along the trailing path on 
to the service (e.g /stilton) and if the service doesn’t accept 
request on that path you get a 403 error response. Thus 
with rewrite-target annotation, the request path is rewritten 
with the given path before the request get’s forwarded to the 
target backend. 



The ingress controller 
In order for the Ingress resource to work, the cluster must have 
an Ingress controller running. When a user requests an ingress 
by POSTing an Ingress resource (such as the one above) to the 
API server, the Ingress controller is responsible for fulfilling the 
Ingress, usually with a loadbalancer. Though it may also 
configure the edge routers or additional frontends to help 
handle the traffic. 

As such without an Ingress controller to satisfy the ingress, 
merely creating the ingress resource will have no effect. 

You can write your own controller but you need not to. There 
are readily available third-party ingress controllers like 
the Nginx, Traefik, HAproxy controllers which you could easily 
leverage. I will be using the Nginx controller for this demo but 
feel free to try out any other. 

Setup 
Minikube v0.14.0 (and above) ships with Nginx ingress setup as 
an add-on (as requested here). It can be easily enabled by 
executing 

minikube addons enable ingress 

Enabling the add-on provisions the following: 

 a configMap for the Nginx loadbalancer 

 the Nginx ingress controller 

 a service that exposes a default Nginx backend pod for 
handling unmapped requests. 



If you are using an older version of minikube (and insist on not 
updating) you might need to manually deploy the ingress 
controller (and default backend service). 

The layout of our cluster for this demo is: 

 A backend that will receive requests 
for myminikube.info and displays some basic information 
about the cluster and the request. 

 A pair of backends that will receive the request 
for cheeses.all .One whose path begins with /stilton and 
another whose path begins with /cheddar . 

Nginx already provides a default backend so we need not worry 
about that. 

Let’s set up the echoserver deployments and expose them: 

kubectl run echoserver --
image=gcr.io/google_containers/echoserver:1.4 --port=8080 
kubectl expose deployment echoserver --type=NodePort 

Then confirm that requests can get to the service 

minikube service echoserver 

This should open the service in your default browser. 
Next we setup the backend for /stilton cheese 

kubectl run stilton-cheese --image=errm/cheese:stilton --
port=80 
kubectl expose deployment stilton-cheese --type=NodePort 

You can also check out the service: 



minikube service stilton-cheese 

Finally the /cheddar cheese 

kubectl run cheddar-cheese --image=errm/cheese:cheddar --
port=80 
kubectl expose deployment cheddar-cheese --type=NodePort 
minikube service cheddar-cheese 

Thus far, we can access the services via the [minikube ip]:[node 
port] address. Our aim, however, is to access them 
via myminikube.info , cheeses.all/stilton and cheeses.all/cheddar
 . And that’s where ingress comes in. 

To setup ingress, enable the minikube add-on 

minikube addons enable ingress 

Copy the ingress definition above and save to a file ingress-
tutorial. Then we create the ingress resource 

kubectl create -f ingress-tutorial.yaml 

or create directly from the gist 

kubectl create -f 
https://gist.githubusercontent.com/0sc/77d8925cc378c9a6a92890e
7c08937ca/raw/84ceff5f03da4a2d0a4d2afabd30a1cf3d61fbd1/ingress
-tutorial.yaml 

You can run kubectl describe ing ingress-tutorial for 
information on the requested ingress. 



 

Now, the last bit is to update our /etc/hosts file to route requests 
from myminikube.info and cheeses.all to our minikube instance. 

Execute 

echo "$(minikube ip) myminikube.info cheeses.all" | sudo tee -
a /etc/hosts 

to add the following lines to your /etc/hosts file. 

[minikube ip] myminikube.info cheeses.all 

[minikube ip] will be replaced with the actual IP of your 
minikube instance. 

And our work is done. 
Test it out by 
visiting myminikube.info , cheeses.all/stilton , cheeses.all/chedda
r from your browser. 
 


